Computer Science E-1

Exam I Review Session

Administrivia

- Exam is next Monday, right here.
 - 5:30pm 7:30pm. You will have 2 hours to complete the exam.
- The exam will consist of questions, equally representing lectures 1-4.
 - Including (but not limited to): Fill in the blank, short answer, Multiple Choice.
- No calculators, notes, or other aids.

Study Tips

- Read the recaps
 - Don't just skim them, pause and make sure you understood what you just read
 - Use the practice questions at the end for, well, practice!
- Go over the problem sets
 - Especially the problems you got wrong!

Computer Science E-1

Review of Lecture 1: Hardware

Motherboard and Power Supply

- Motherboard circuit board that holds crucial components
- Power Supply manages voltage sent to individual components

BIOS, CMOS, POSTs

- BIOS (Basic Input Output System) instructions for computer to start successfully
- CMOS (Complementary Metal-Oxide Semiconductor) - stores information for BIOS
- POSTs (Power On Self Tests) test that computer's hardware is functioning properly

Graphics Cards and Ports

- PCI Slot connects graphics cards, sound cards, video cards
- PCI Express newer, faster PCI standard
- AGP (Accelerated Graphics Port) higher performance port for graphics cards

RAM

- RAM (Random Access Memory) computer's shortterm memory
 - Typical values 2GB to 4GB

Ethernet and USB

- Ethernet port connects computer to router or modem
- USB port connects computer to cameras, smartphones, printers
 - USB A to B, Micro USB to A

VGA, DVI, HDMI

- Connect computer to external display (monitor)
- VGA analog, no audio
- DVI digital, no audio
- HDMI digital, audio, commonly used for TVs

OS, Kernel

- OS (Operating System) Windows, OS X, Linux
- Kernel part of the OS, bridge between hardware and other software

Hard Drive and Connectors

- Hard Drive computer's long-term storage
 - Typical values several hundred GBs
- SATA, IDE (PATA) connects hard drive to motherboard
- HDD vs SSD

CPU and Heat sink

- CPU Processor, brains of the computer
 - Speed is measured in GHz
- Heat sink keeps CPU cool

Northbridge and Southbridge

- Northbridge the half of the motherboard that frequently interfaces with CPU
 - CPU, RAM, graphics card
- Southbridge interfaces with other components
 - USB, PCI, SATA hard drive

Keyboard

- Key matrix grid of circuits under keys
 - A circuit is completed each time a key is pressed
- ROM (Read-Only Memory) used by keyboard to map circuit locations to characters

Mouse

- Ball mouse tracks motion of ball to determine mouse movements
- Optical mouse uses LED to track motion

Bits and Binary

- Bits (Binary Digits) 0s and Is
- Binary representation of numbers with bits

Binary to Decimal

10101

Binary to Decimal

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ (1 * 16) & + & (0 * 8) & + & (1 * 4) & + & (0 * 2) & + & (1 * 1) \\ \hline & 16 & + & 4 & + & 1 \\ \hline & 21 & & & & & & \end{bmatrix}$$

Decimal to Binary

12

Decimal to Binary

```
12
0 1 1 0 0
(0 * 16) + (1 * 8) + (1 * 4) + (0 * 2) + (0 * 1)
```

ASCII and UTF-8

- ASCII defines characters as numbers
 - 'A' = 65
- UTF-8 a form of unicode, defines over a million characters

Nibbles and Bytes

- Nibbles 4 bits
- Bytes 8 bits
- Kilobytes ~1000 bytes
- Megabytes ~1000 kilobytes
- Gigabytes ~1000 megabytes

Computer Science E-1

Review of Lecture 2: Hardware

Hardware, Continued

- CPU
- RAM
- Hard Drive

CPU

- Processes
- Pipeline
- Parallelism
- Performance

CPU: Processes

- "a single instance of a program being executed"
- each can use time on the CPU, and memory

CPU: Instruction Set

- Different CPUs understand different instructions
- The instructions a CPU can follow is called its "instruction set"
- Three primary types of instructions:
 - Data store or read data from memory
 - Arithmetic perform arithmetic on data
 - Control Flow determine which instruction(s) to execute next

CPU: Pipeline

- Each instruction is broken up into a series of steps, called the pipeline.
- For example, a 4 stage pipeline could look like this:
 - Fetch read instruction into memory
 - **Decode** determine what needs to be done
 - Execute do it
 - Writeback store result somewhere

CPU: Parallelism

- Superscalar architectures
- Multicore processors

CPU: Superscalar

- Each stage of the CPU pipeline can happen at the same time.
- This allows more instructions to occur in the same number of cycles.

CPU: Multicore

- If we have 2 processors, 2 instructions can be run at the same time.
- What problems have we introduced?
 - Managing two processors
 - Making sure instructions don't interfere with each other
 - Balancing workload

CPU: Performance

- Clockspeed, pipeline length
- Moore's Law processing power doubles every 18 months
 - Will this keep up?
- "Megahertz Myth"

Memory

- Registers
- RAM
- Endian-ness
- Cache

Memory: Registers

- Small pieces of memory on the CPU
 - VERY tiny (on the order of bytes)
 - used for computation, etc
- Fast, expensive

Memory: RAM

- Short term memory with a larger capacity
- Slower, less expensive than CPU registers
- Used to store things like songs, frames of a video, webpages, etc.
- Broken up into I-byte "blocks"

Memory: Endian-ness

- Because most data is larger than I byte, we need some way to combine blocks.
- If we read bytes left-to-right, this is called big-endian.
- If we read bytes right-to-left, this is called littleendian.

Endian Example

In a big-endian system, these four bytes represent 00000000000000000000010100111001 = 1,337

In a little-endian system, these four bytes represent 0011100100000101000000000000000 = 956,628,992

Memory: Cache

- Small, fast memory located near the processor.
- Typically stores a copy of something on RAM, for quicker access.
- Two types:
 - LI cache closer, smaller, and faster
 - L2 cache slightly farther away, bigger, slower

Hard Drives

- HDDs
- Filesystems
- SSDs
- Virtual Memory

HDD

- consists of magnetic platters
- information is encoded on the platters via readwrite heads
- platter divided into tracks and sectors
- locations of files are stored in a file allocation table, on the drive

Filesystems

- The details of how files are stored and accessed depends on the type of **filesystem** that the operating system employs in organizing files.
- Windows typically uses a filesystem called NTFS.
- Thumb drives typically use FAT.
- Mac OS X typically uses HFS+.

Filesystems, cont.

- What makes filesystems different?
 - The way things are organized on disk (unseen by you)
 - The maximum file size.
 - The maximum disk size.

SSDs

- Solid State Drives (SSDs) have no moving parts, and store their contents in flash memory, much like RAM.
- SSDs are more expensive and store less than HDDs, but are faster and use less power.

Virtual Memory

- I'll be honest, this is pretty confusing.
- Essentially, the operating system allows processes to think that they have access to more memory than is available.
- This is implemented by creating **swap files** on the hard drive, that act as RAM.
- Notice that this is slower than having more RAM.

Shopping!

- display
- weight
- resolution
- CPU cores
- CPU cache size

- RAM size
- storage capacity
- HDD / SSD
- peripherals
- keyboard

Summary

(taken from lecture, so you know it's good!)

CPU

- instruction set
- pipeline
- parallelism
- superscalar

- multi-core
- clock speed
- Moore's Law
- Megahertz Myth

Memory

- byte, kilobyte, megabyte
- registers
- RAM
- addressing
- big-endian, little-endian
- caching
- L1 cache, L2 cache, L3 cache

- hard disk drive
- platters, tracks, sectors
- read-write heads
- file allocation table
- seek time, data rate
- solid state drive
- flash memory

Computer Science E-1

Review of Lecture 3: Internet

Clients and Servers

- Server computer that powers a website
- Client user that makes request to server

ISP, LAN, WAN

- ISP (Internet Service Provider) connects you to the internet
- LAN (Local Area Network) connects computers in a limited area, such as a home or office
- WAN (Wide Area Network) connects computers over a larger area

IP, IPv4, IPv6

- IP Address unique series of numbers assigned to each device on a network
- IPv4 32 bit IP address
- IPv6 128 bit IP address

Routers and Routing Table

- Router routes network requests to correct destinations
- Routing Table maps ranges of addresses to routers

NAT, Private IPs, Source Port

- NAT (Network Address Translation) modifies requests from devices with private IPs to give them the router's public IP
- Private IP Address addresses that aren't publicly accessible
- Source Port unique number used by the router to identify devices connected to the network

DHCP

 DHCP (Dynamic Host Configuration Protocol) - process through which clients obtain an IP address on a network

Firewalls and VPNs

- Firewall software that protects a network from malicious connections
- VPN (Virtual Private Network) allows you to access a LAN you're not connected to

DNS and Domains

- DNS (Domain Name System) a database that maps domain names to specific IP addresses
- Subdomain addresses like foo.domain.tld
- TLD (Top Level Domain) suffix like com, net, or org
- ccTLD country code TLD like tm, ly, sy

DNS Servers

- Cache DNS server first server contacted by browser to determine IP address of a domain name
- Root DNS server contacted after trying several DNS servers, forwards requests to TLD DNS server
- TLD DNS server handles all request for a certain TLD (.net)
- Authoritative name server queried by TLD DNS, maintains lists of all addresses in a DNS zone

DNS Records

- NS: name servers
- MX: email
- A: IPv4 address
- AAAA: IPv6 address
- CNAME: domain alias

Registrars and ICANN

- Registrar Organization that handles reservation of domain names
- ICANN Non-profit responsible for managing registered domain names

URL

http://foo.example.com:1234/cs/e1/is.html?fun=yes&boring=no#awesome

- Scheme "http"
- Domain "foo.example.com"
- Port "1234"
- Path "/cs/e1/is.html"

- Query string "fun=yes&boring=no"
- Fragment "#awesome"

Key-Value Pairs

query=csel&page=3

- keys "query" and "page"
- values "csel" and "3"

URI

• URI (Uniform Resource Identifier) - a unique identifier, more general than URL

APIs

- API (Application Programming Interface) a way of exposing information in a standard structure
 - Facebook API to allow programmers to get information from profiles

Computer Science E-1

Review of Lecture 4: Internet

Internet, Continued

- Protocols
- HTML
- Email
- TCP/IP

Protocols

- DHCP
- HTTP
- TCP/IP

DHCP

- send DHCPBROADCAST to locate network's DHCP
- receive DHCPOFFER contains IP for client
- send DHCPREQUEST asking to claim the IP
- receive DHCPACK confirmation

HTTP

- Request
 - method/verb (e.g. GET, POST)
- Response
 - Headers
 - Body

HTTP Example

GET /home.php HTTP/1.1

Host: facebook.com

HTTP/1.1 200 OK

Date: Wed, 30 Jan 2013

21:43:11 GMT

Server: Apache/2.2.22 (Fedora)

Content-Length: 2422

Content-Type: text/html;

charset=UTF-8

Connection: close

Status Codes

- Comes back with the HTTP Response
- Helps the browser know what to do (render, redirect, show an error, etc.)
- Some good ones to know:
 - 200 (OK), 404 (Not Found), 500 (Internal Server Error)

HTML

- tags <hl></hl>, for example
- contained in the body of the HTTP response

SMTP

- Simple Mail Transfer Protocol
- SMTP Server managed by mail provider (like Google)
- Queue of messages to send
- Headers/Body look at the detailed demo in the recap

POP3

- Way of receiving messages from a server
- Commands that your email client (like Gmail) would send to the server (in particular retr and dele)
- Doesn't store state on the server

IMAP

- Two way communication can store state on the server
 - Like read vs. unread, etc.

TCP/IP

How an HTTP request is actually sent/received

TCP

- TCP ensures reliable data transfer
 - all the segments will get there, and they will get there in order
 - How? Sequence numbers and ACKs (confirmation of receipt)