Review: Exam 1

Computer Science E-1
3/4/11

Reminders

- Exam 1 on Monday, March $7^{\text {th }}$
- Local students: in lieu of lecture
- 5:30-7:30pm @ Harvard Hall 104
- Distance students: remote proctoring - https://www.computerscience1.net/2011/spring/FAQs
- 2 hours
- Closed-book
- Paper \& Writing Utensil

Study Tips

- Know the lectures!
- Look over slides/topics
- Would you be able to explain them to someone?
- Re-watch/Skim videos
- Try the practice exam.
- Familiarize with format
- Get an idea of iffier areas
- Skim readings/sections if want more details
- internet = good resource too!

(Ambitious?) Agenda

- Binary
- \& Decimal
- ASCII
- Hardware
- Memory
- HDD
- Add-ons
- Internet
- IP Addresses
- NAT
- DNS
- DHCP
- Data Travel

Binary: The Basics

- Base-2 number system
- Each digit is a power of two
- Binary Digit: bit
- One (1) or Zero (0) only
- Corresponds with "on" or "off," "true" or "false"
- Analogy:
- Using flashlight or switches to represent data
- Language of Computers
- Why? -> Hardware

Binary From Decimal

- In Decimal: 42

\ldots	1000s	100s	10s	1 s	column
\ldots	0	0	4	2	

$0 * 1000+0 * 100+4 * 10+2 * 1=42$

- In Binary: 42

"Algorithm":

1. Biggest bite of remaining
2. What's left?
3. Repeat

\ldots	$64 s$	$32 s$	$16 s$	$8 s$	$4 s$	$2 s$	$1 s$	column
\ldots	0	1	0	1	0	1	0	

$$
\begin{aligned}
1 * 32= & 32 \quad(42-32=10 \text { remaining }) \\
& +1 * 8=40 \quad(42-40=2 \text { remaining }) \\
& +1{ }^{*} 2=42!
\end{aligned}
$$

Binary To Decimal

- What's 10001 in Decimal?
- Hint: remember the table and the columns!

\ldots	64 s	32 s	16 s	8 s	4 s	2 s	1 s	column
\ldots			1	0	0	0	1	

$$
1 * 16+1 * 1=17!
$$

- Algorithm:
- Figure out which power of 2 is "on"/present
- Mathematically add all "on"/present

Question Time!

- Explain the following quote:
"There are only 10 types of people in this world: those who know binary and those who don't."
- What's 61 in Binary?
- Hint:

\ldots	$64 s$	32 s	16 s	8 s	4 s	2 s	1 s	column
\ldots	0	1	1	1	1	0	1	

Binary \& Computers

- Everything comes down to bits
- Hardware:
- transistors on or off (computations)
- magnetic particles N or S (hard disk storage)
- 8 bits $=1$ byte
- 1024 bytes $=1$ kilobyte
- 1024 kilobytes = 1 megabyte
- 1024 megabytes = 1 gigabyte
- 1024 gigabytes = 1 terabyte

Question Time!

- A joke:
- A computer scientist buys a kilo of meat from the butcher's. Five minutes later, he returns claiming he's been cheated. The butcher weighs it: 1000g; the techie states his point has been proven.
- Why or how?
- How much did he "lose"?

Binary Representation

- How do bits and bytes translate into data and programs?
- Standard mappings
- ASCII
- (American Standard Code for Information Interchange)
- 8-bits
- Another example:
- Unicode: 16+ bits

ASCII Representation

- ASCII Table
- Not just letters and numbers
- Punctuation, control characters too
- (To memorize:)
- A: 65
- a: 97

Source: www.LookupTables.com

Question Time!

Dec Hx Oct Html Chr Dec Hx Oct Html Chr $^{\text {Ot }}$

	9660140	
41101 ¢\#65; A	61	
42102	9862	
43103 \&	9963	
44 104 \&\#68;	10064	
6945105	10165	
	10266	
7147107 \&\#7	1036714	
48110	10468	
49111 \&\#	1056915	
4 A 112 \&\#74;	106 6A 152	
	107 6B 153	
7640	60	
	109 6D 15	
4E 116 ¢\#78;	1106 E 156	
4F 117 ¢\#79;	1116 F 157	
50120 \& $\# 80$	70160	
51 121 ¢\#81;	71	
52122	11472	
53123 ¢\#83;	11573163	
54124 \&\#84;	11674164	
55125 ¢\#85;	11775165	
56126 ¢\#86;	1187616	
8757127	1197716	
8858130	12078170	
8959131	12179171	
0 5A 132		

You receive a top-secret
message. What's it say?

- $1000111=71=G$
- $1001100=76=L$
- 0100001 = 33 = !

On to Hardware...

- The "brains": CPU
- (Central Processing Unit)
- Executes instructions/tasks
- Where do these instructions come from?
- Memory!

Memory: Two Types

HDD

- Persistent
("Permanent")
- Stays around after the power's off
- IRL Analogy:
- Long-term memory
- Larger Space
- ~300GB
- Slower Access
- Mechanical

RAM

- Volatile
- Needs "constant" power
- IRL Analogy:
- Short-term memory
- Smaller Space
- ~3GB
- Faster Access
- Electrical

Memory Access

- (Also: L1, L2 caches)
- Faster than RAM, usually on CPU itself
- Optimization

Question Time!

You are studying for the E-1 Exam when a vague analogy hits you:

- Bookshelf (HDD) -> Large data collection
- Desk (RAM) -> Retrieved data to use
- Your Brain (CPU) -> Processes retrieved data

How could this relate to Hardware? (Does it?)

Hard Disk Access

- How do we get data from the Hard Disk, again?

- The platter:
- Magnetic Particles
- Spins
- E.g. 5400RPM
- N/S binary representation
- Data can scattered all over
- A file keeps track of data locations

Tie-In with Floppy Disk Drives

- Similar to HDD
- Disk with magnetic particles
- Read/Write head
- No sweeping arm
- "platter" is floppy circle of magnetic material

Question Time!

- A friend laments how his laptop (and most computers) doesn't have a floppy disk drive so he can't access all his floppy disk backups.
- Is all hope lost?
- What could you suggest to him?

Peripherals

- Computers have slots and ports for add-ons
- Internal
- (Additional) RAM
- (Better) Graphics Card
- Etc.
- External
- Printer
- Mouse, Keyboard
- USB (Universal Serial Bus) usb Ports
- Etc.

Moving on to the Internet...

Question Time!

- Your friend in Japan refers you to a download page (for an awesome program). The page lists several download "mirrors" (locations):
- Scratch v.1.2 (Japan)
- Scratch v.1.2 (Germany)
- Scratch v.1.2 (U.S.)
- She says the Japan link connects really fast and recommends it.
- Which would you click and why? (Does it matter?)

Latency v. Download Speed

- Latency
\square Delay between when data is requested and received
- Usually measured in milliseconds [ms]
- Download Speed
- How fast data transfers
- Usually measured in megabits per second [Mb/s]
- Analogy: turning on a garden hose
- Latency: time for water to come out of nozzle
- Download Speed: how fast water flows out

IP Addresses

- How does data know where to go?
- Internet Protocol (IP) Addresses!

IPv4:

- Form: W.X.Y.Z
- Each letter/octet a number from 0-255
- How many possible IP addresses, again?
- Ex:

$$
4^{*} 8=32 ; 2^{32} \approx 4.2 \text { billion }
$$

- 140.247.149.203

IP Addresses

$$
\left.\begin{array}{l}
\text { cass subnet } \\
\text { Wube } \\
=
\end{array}\right] \cdot z
$$

- Class
- "chunks" for different entities
- Subnet (general left side):
a sub-networks, adjacent machines
- Rest (general right side):
- Individual Machine Identifier

IP Addresses: Public \& Private

- Each machine on the internet needs an IP Address.
- Kind of.
- For a network, each machine can have a private IP address
- Router mediator has one public IP address
- So network machines all represented by "one" public IP address
- Called Network Address Translation (NAT)

From:

NAT Visual

From:

(140.247.149.203)
(140.247.149.203)
(140.247.149.203)
(140.247.149.203)

Domain Name System

- IP Addresses <=> Domain Names
- Like a phonebook
- Not a one-to-one relation
- Top-level Domains (e.g. harvard.edu)
- SubDomains (e.g. fas.harvard.edu)
- Luckily, automatic.
- DHCP (Dynamic Host Configuration Protocol)
- Allows your machine to communicate w/Internet

Question Time!

- You get an email from a domain of:
- bank.ofamerica.com
- requesting your account number and PIN.
- Is it legitimate?

Connecting it All

provides...

- IP Address to ID that machine
- DNS server list for Domain Names
- Gateway router
- Subnet mask
- (used to determine ip addresses on same network)

Traveling Data

- Packets
- Numbered
- From:
- To:
- Etc.
- If lost, server is informed \& sends another
- Part of the TCP/IP protocol (standard rules for internet communication)

Questions?

- Email us!
- Good luck!

