CS E1: Section 1: Counting in Binary

CS E1, Section 1: The History of 1 and 0

George Boole (1815-1864)

- English mathematician
- Invented boolean logic

George Boole (1815-1864)

- English mathematician
- Invented boolean logic

Boolean Logic is everywhere

- boolean tools are built into search engines:
- Boston Public Library
- Google
- Gmail

George Boole (1815-1864)

- English mathematician
- Invented boolean logic

Boolean Logic is everywhere

- lets you search for
- Boston Public Library

■ sharks NOT attack

- Google
- Gmail

George Boole (1815-1864)

- English mathematician
- Invented boolean logic

Boolean Logic is everywhere

- lets you search for
- Boston Public Library

■ sharks NOT attack

- Google

■ "David Malan" AND "Dan Armendariz"

- Gmail

George Boole (1815-1864)

- English mathematician
- Invented boolean logic

Boolean Logic is everywhere

- lets you search for
- Boston Public Library
- sharks NOT attack
- Google

■ "David Malan" AND "Dan Armendariz"

- Gmail

■ from:pnore@fas.harvard.edu OR from: contact@tombarasso.com

Claude Shannon (1916-2001)

- American Mathematician
- Founded circuit design at 21 with his Master's thesis at MIT
- Called the "most important master's thesis of all time"

Claude Shannon (1916-2001)

- American Mathematician
- Founded circuit design at 21 with his Master's thesis at MIT
- Called the "most important master's thesis of all time"

The thesis describes how Boolean logic circuits can represent any logical or numerical relationship

Claude Shannon (1916-2001)

- American Mathematician
- Founded circuit design at 21 with his Master's thesis at MIT
- Called the "most important master's thesis of all time"

The thesis describes how Boolean logic circuits can represent any logical or numerical relationship
(wow - that's what makes computers possible)

What is a function?

A function is ...

What is a function?

A function is ...

- like a "machine" that turns inputs into an output

What is a function?

A function is ...

- like a "machine" that turns inputs into an output
- like a "black box" - to use it we don't need to know how it works, we just need to know what it needs (inputs) and what it does (output)

What is a function?

For our purposes, a function is ...

- like a "machine" that turns inputs into an output
- like a "black box" - to use it we don't need to know how it works, we just need to know what it needs (inputs) and what it does (output)
- repeatable. The same inputs lead to the same output.

How do we describe a function? With a truth table.

a and b are inputs of function "out" is the output of the function

a b out
 000
 010
 100
 111

What is the truth table of the "NOT" function?

NOT

How many inputs does it have?

What is the truth table of the "NOT" function?

NOT

How many inputs does it have? ONE

What is the truth table of the "NOT" function?

NOT

How many inputs does it have? ONE

a out

How many outputs does it have?
0 ONE

What is the truth table of the "NOT" function?

NOT
How many inputs does it have? ONE
How many outputs does it have?
a out
01
ONE
10
What is the relationship between them?

OPPOSITE

What is the truth table of the "OR" function?

OR

How many inputs does it have? TWO
How many outputs does it have? ONE

a b out

00
01
What is the relationship between them?

11

What is the truth table of the "OR" function?

OR

How many inputs does it have? TWO
How many outputs does it have?

a b out

000
ONE
01
What is the relationship between them?

What is the truth table of the "OR" function?

OR

How many inputs does it have? TWO
How many outputs does it have? ONE
What is the relationship between them?

a b out
 000
 011
 10
 11

What is the truth table of the "OR" function?

OR

How many inputs does it have? TWO
How many outputs does it have? ONE
What is the relationship between them?

a b out
 000
 011
 101
 11

What is the truth table of the "OR" function?

OR

How many inputs does it have? TWO
How many outputs does it have? ONE
What is the relationship between them?

a b out
 000
 011
 101
 111

What is the truth table of the "OR" function?

OR

How many inputs does it have?
TWO
How many outputs does it have?
ONE
What is the relationship between them?
TRUE IF EITHER OR BOTH ARE TRUE, FALSE OTHERWISE

a b out
 000
 011
 101
 111

All Boolean functions of 2 variables

Function	\boldsymbol{x}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
	\boldsymbol{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \bar{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\bar{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \bar{y}+\bar{x} \cdot y$	0	1	1	0
Or	$x+y$	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y+\bar{x} \cdot \bar{y}$	1	0	0	1
Not y	\bar{y}	1	0	1	0
If y then x	$x+\bar{y}$	1	0	1	1
Not x	\bar{x}	1	1	0	0
If x then y	$\bar{x}+y$	1	1	0	1
Nand	$\overline{x \cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

All Boolean functions of 2 variables

What do you notice about the pattern?

Function	\boldsymbol{x}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
	\boldsymbol{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \bar{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\bar{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \bar{y}+\bar{x} \cdot y$	0	1	1	0
Or	$x+y$	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y+\bar{x} \cdot \bar{y}$	1	0	0	1
Not y	\bar{y}	1	0	1	0
If y then x	$x+\bar{y}$	1	0	1	1
Not x	\bar{x}	1	1	0	0
If x then y	$\bar{x}+y$	1	1	0	1
Nand	$\overline{x \cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

Gate logic - each function has its own "chip" inside the cpu

- Gate logic - a gate architecture designed to implement a Boolean function
- Elementary gates:

- Composite gates:

Gate interface

Gate implementation

- Important distinction: Interface (what) VS implementation (how).

CS E1, Section 1: number vocabulary

bit, byte, kilo-, mega-, giga-, tera-

Vocab

- BIT

Vocab

- BIT
- a one or a zero

Vocab

- BIT
- a one or a zero
- BYTE

○

Vocab

- BIT
- a one or a zero
- BYTE
- eight bits: 00000000

Vocab

- BIT
- a one or a zero
- BYTE
- eight bits: 00000000
- can store $2^{\wedge} 8$ numbers:

Vocab

- BIT
- a one or a zero
- BYTE
- eight bits: 00000000
- can store $2^{\wedge} 8$ numbers: 0-255
- KILOBYTE
\bigcirc

Vocab

- BIT
- a one or a zero
- BYTE
- eight bits: 00000000
- can store $2^{\wedge} 8$ numbers: 0-255
- KILOBYTE
- ~1000 bytes

Vocab

- BIT
o a one or a zero
- BYTE
- eight bits: 00000000
- can store $2^{\wedge} 8$ numbers: 0-255
- stores one character
- KILOBYTE
- ~1000 bytes
o actually 2^10 numbers: 0-1023
\circ stores less than eight twitter posts

Vocab

- BIT
o a one or a zero
- BYTE
- eight bits: 00000000
- can store $2^{\wedge} 8$ numbers: 0-255
o stores one character
- KILOBYTE
- ~1000 bytes
o actually 2^10 numbers: 0-1023
o stores less than eight twitter posts
- MEGABYTE
o ~1,000,000 bytes
o actually 2^30 numbers: 0-1,048,575 - less than 1/3 of a typical mp3 song

Vocab

- http://en.wikipedia.org/wiki/Megabyte

CS E1, Section 1: ascii

American Standard Code for Information Interchange

Dec	HxOct Char		Dec	Hx Oct	Html Chr	Dec	C Hx Oct	Html Chr		,	ml Chr
0	000 NJUL	(null)		20040	\&\#32; Space	64	40100	\&\#64; [0]	96	60140	\&\#96;
1	100150 H	(start of heading)		21041	\&\#33;	65	41101	¢\#65; A	97	61141	¢\#97;
	2002 STX	(start of text)		22042	\&\#34;	66	42102	\&\#66; B	98	62142	\&\#98;
3	3003 ETX	(end of text)	35	23043	\&\#35;	67	43103	\&\#67; C	99	63143	\&\#99;
4	4004 E0T	(end of transmission)	36	24044	\&\#36;	68	44104	\&\#68; D	100	64144	¢\#100;
5	5005 ENQ	(enquiry)		25045	\&\#37;	69	45105	\&\#69;	101	65145	¢\#101;
6	6006 ACK	(acknowledge)	38	26046	\&\#38;	70	46106	\&\#70; F	102	66146	\&\#102;
7	7007 BEL	(bell)	39	27047	\&\#39;	71	47107	\&\#71;	103	67147	\&\#103; g
8	8010 BS	(backspace)		28050	\&\#40;	72	48110	\&\#72; H	104	68150	\&\#104; h
9	9011 TAB	(horizontal tab)		29051	\&\#41;	73	49111	\&\#73;	105	69151	\&\#105; i
10	A 012 LF	(NL line feed, new line)	42	2A 052	\&\#42;	74	4 A 112	\&\#74;	106	6 A 152	¢\#106;
11	B 013 VT	(vertical tab)	43	2B 053	\&\#43;	75	4B 113	¢\#75; K	107	6B 153	\&\#107; k
12	C 014 FF	(NP form feed, new page)	44	2C 054	\&\#44;	76	4C 114	\&\#76;	108	6 C 154	\&\#108;
13	D 015 CR	(carriage return)	45	2D 055	\&\#45;	77	4D 115	¢\#77; M	109	6D 155	\&\#109; II
14	E 016 S0	(shift out)	46	2E 056	\&\#46;	78	4 E 116	\&\#78;	110	6 E 156	\&\#110; n
15	F 017 SI	(shift in)	47	2F 057	\&\#47;	79	4 F 117	¢\#79;	111	6 F 157	\&\#111;
16	10020 DLE	(data link escape)	48	30060	\&\#48; 0	80	50120	\&\#80;	112	70160	\&\#112; p
17	11021 DCl	(device control 1)	49	31061	\&\#49; 1	81	51121	\&\#81: Q	113	71161	\&\#113;
18	12022 DC2	(device control 2)	50	32062	\&\#50; 2	82	52122	\&\#82; R	114	72162	\&\#114; r
19	13023 DC3	(device control 3)	51	33063	\&\#51; 3	83	53123	\&\#83;	115	73163	\&\#115;
20	14024 DC4	(device control 4)	52	34064	\&\#52; 4	84	54124	\&\#84; T	116	74164	\&\#116;
21	15025 NAK	(negative acknowledge)	53	35065	\&\#53; 5	85	55125	\&\#85; U	117	75165	\&\#117; u
22	16026 SYN	(synchronous idle)	54	36066	\&\#54; 6	86	56126	\&\#86;	118	76166	¢\#118;
23	17027 ETB	(end of trans. block)	55	37067	\&\#55; 7	87	57127	\&\#87;	119	77167	\&\#119; W
24	18030 CAN	(cancel)	56	38070	\&\#56; 8	88	58130	\&\#88;	120	78170	\&\#120;
25	19031 EM	(end of medium)	57	39071	\&\#57; 9	89	59131	\&\#89; Y	121	79171	\&\#121; Y
26	1A 032 SUB	(substitute)		3A 072	\&\#58;	90	5A 132	\&\#90; 2	122	7A 172	\&\#122;
27	1B 033 ESC	(escape)	59	3B 073	\&\#59;	91	5B 133	\&\#91:	123	7B 173	\&\#123;
28	1C 034 FS	(file separator)	60	3C 074	\&\#60; <	92	5C 134	\&\#92:	124	7 C 174	\&\#124;
29	1D 035 GS	(group separator)	61	3D 075	\&\#61	93	5D 135	\&\#93;	125	7D 175	\&\#125;
30	1E 036 RS	(record separator)	62	3E 076	\&\#62;	94	5E 136	\&\#94;	126	7E 176	\&\#126;
31	1F 037 US	(unit separator)	63	3F 077	\&\#63; ?	95	5F 137	\&\#95;	127	7F 177	\&\#127; DEL

Source: www.LookupTables.com
CS E1, Section 1: ascii

Ascii numbers to remember:

65 is capital ' A ' 97 is lowercase 'a'

Dee Hx Oct Html Chr| Dec Hx Oct Html Chr
$6440100 \Leftrightarrow \# 64 ; 8960140 \Leftrightarrow \# 96 ;$ $6541101 \Leftrightarrow \# 65 ;$ A $9761141<\# 97 ;$ a $6642102 \Leftrightarrow \# 66 ;$ B $9862142 \Leftrightarrow \# 98 ; ~ b$ 6743103 «\#67; C 9963143 «\#99; C

Source, explanation: link

aining.
OP would
some tax
ting deal,

lican

door to
n. $\boldsymbol{A 1}$
ers
ecu-
e sex-
st the
l. A2
nak-
?
ils
42
in
in John Boehner. (The tweet was garbled only on the screen at the event.) Twitter Inc. selected the fir

https://docs.google. com/spreadsheet/ccc? key=OApKUsT5wTHHgdHpDNkE tOUIDUUNkeVF4cmlhSIVXYVE\& hl=en US

example: ascii in a spreadsheet

