
What is a program?
- A set of instructions to a computer

Algorithms

Problem1: How to look up Rei Diaz’s phone number in a White Pages book?

- Algorithm 1:
o Turn pages one by one until you hit “D”
o Turn pages one by one until you hit “i” after the “D”
o etc.
o max search time for this algorithm in a book with 1,000,000 entries is

1,000,000 (if you’re looking for the last entry)
o This is a linear search algorithm

- Algorithm 2 (more efficient):
o Open the book in the middle, compare the current page with “D”,

§ if current page is further down, then split the earlier half in half next
time (and “throw away” the latter half)

§ if current page is before the “D”, then split the latter half in half next
time (and “throw away” the earlier half)

§ if current page starts with a “D”, take the 2nd letter and the search key
and proceed similarly

o repeat the process until you end up on the same page (e.g. starts with “Dia”)
– and finish the process on a single page in a similar manner

o max search time for this algorithm in a book with 1,000,000 entries is just
20 steps! (You’re throwing away half of the problem each time, so this
algorithm is logarithmic)

Problem 2: How to count students in a room?

- Algorithm 1:
o Count one by one
o The so-called “running time” is, again, on the order of n if there are n

students (i.e. linear)
- Algorithm 2:

o Consider the algorithm in the lecture slides
o Assume (in the world of computing, this is a reasonable) that steps 3-6 are,

fundamentally, just one step (they form a loop). Then the performance of
this algorithm is, again, log(n).

- the branch of computer science that deals with algorithm efficiency studies the
performance of different algorithms that achieve the same result in different
amounts of time

- we measure “time”, as related to algorithms, in the number of different instructions

(or steps) that a computer needs to take to complete the program

- given the same computing resources, a faster algorithm may drastically improve the
performance of a program

- a bug is a logical mistake in a computer program. An infinite loop, i.e. a loop that

never reaches an exit condition, is a common example of a bug that will cause the
program to “hang”

Programming Languages

- The algorithms we have seen thus far are written in what’s called pseudocode, i.e.

instructions resembling those of a computer program, but written in plain English
- Computers, however, cannot understand English (or any other natural language)

due to its inherent imprecision and ambiguity, i.e. computers cannot make
inferences or judgments

- Computers use specialized programming languages that have a strict logical
grammar to which the programmer must conform

- Most modern programming languages use the same constructs:

o variable assignment : assigning a value to a variable (or a place to store a
value which can be changed at runtime), e.g.
§ a = 4 [assign the value 4 to variable a]
§ aVariable = anotherVariable [assign the value of one variable to

another variable]
§ socks_on_feet++ [increment the value, i.e. add 1 to current value]

o looping: repeating a set of instructions until a condition is met, e.g.
§ for (i = 0; i < 5; i++) (which is equivalent to “for all i such that i is

more than or equal to 0 but less than 5)
{ do something }

§ while socks_on_feet != 2
{ do something }

o branching: checking whether a condition is true or false, and following
alternative paths in a program’s execution depending on the outcome, e.g.
§ if you find a matching sock then

{ … }
else

{ … }
§ if (i equals 5)

then
{do something}

else if (i equals 10)
{do something else}

 else
 {do something completely different}

- indentation may matter greatly in a programming language if it denotes the
boundaries of constructs (many languages, however, do not distinguish between
whitespace, in which case indentation is helpful for program readability)

- XHTML is not a programming language; it is a markup language, i.e. you don’t

direct the computer to execute specific instructions, but rather tell it how to present
information

- source code is the original program written in a particular programming language’s

syntax. Computers do not understand source code, but they do understand binary,
hence you need another standard program to translate your program from source
code to object code (i.e. binary instructions)

- a compiler is a program performing such a translation
- every programming language has its own syntax and, hence, its own compiler

Schematically: [source code] à compiler à [object code]

- XHTML is not compiled, but rather interpreted, which means that a browser
interprets it on the fly, without compilation

- Some “real” (i.e. non-markup, fully-fledged) programming languages are also
interpreted, which in this case means that a special program called the interpreter
executes the program instructions on the fly

- Compiled languages are very efficient (because the end result is already in binary),

but they are not easily transferable between different platforms (operating systems)
- Interpreted languages, on the other hand, are more flexible in terms of platforms,

but are generally slower because they incur the additional overhead of on-the-fly
interpretation

- Some programming languages:

o Compiled: C, C++, C#, Java, Visual Basic
o Interpreted: Perl, PHP, Python, JavaScript

JavaScript

- This is the programming language of choice for client-side programs in web pages
o Contrast this client-side paradigm with SSI (Server Side Includes), which

are programs executed on the server side, and only transmitting results to the
client

o The flying bats on E-1’s website around Halloween were written in
JavaScript

- Despite its name, JavaScript has nothing to do with Java
- Dynamic HTML:

o DHTML = HTML + CSS + JavaScript

Consider the following excerpt from name.html (available at
http://www.fas.harvard.edu/~cscie1/distribution/lectures/11/interpreted/name.html):
<script language="JavaScript" type="text/javascript">
<!--
var name = prompt("Please enter your name.","");
document.write("<title>Welcome, " + name + "!</title>");
//-->
</script>

- the script is enclosed in XHTML comments (<!-- and -->) to be considered a
comment from the XHTML interpreter’s (i.e. a browser’s) point of view for
compatibility with older browsers

- “prompt” is a function that takes 2 arguments (in parentheses, comma-separated,
each flanked by quotes), the first of which denotes the wording of the prompt, and
the 2nd the default initial value for the white box (here it’s left empty). The result of
“prompt” is what the user types in

- “var name” is a variable called name which (by way of the “=” operator) gets
assigned the value returned from the prompt function

- Most of your problems with programming will probably arise from “silly”

syntactical errors like typos
- When you are writing JavaScript at home or in section, check for such errors first

